

# **ESPASTAR™: FLEXIBLE, AFFORDABLE ACCESS TO SPACE**

Northrop Grumman's ESPAStar platform provides a modular, cost-effective, and highly capable infrastructure resource for hosting technology development and operational payloads. The ESPAStar platform uses a customized EELV Secondary Payload Adapter (ESPA) ring as part of its structure and is capable of being launched aboard any launch vehicle that meets the Evolved Expendable Launch Vehicle (EELV) standard interface specification. The ESPAStar platform's six payload ports are capable of accommodating combinations of hosted

| SPE | CIFIC | CATIC | ONS |
|-----|-------|-------|-----|
|     |       |       |     |

| SPECIFICATIONS               |                                                                                              |
|------------------------------|----------------------------------------------------------------------------------------------|
| ORBIT                        | Optimized for GEO, adaptable for LEO and MEO missions                                        |
| TARGETED MISSION<br>DURATION | One to three years, single string                                                            |
| DRY MASS (NO P/LS)           | 430-470 kg, (orbit dependent)                                                                |
| DIMENSIONS (NO P/LS)         | 157.5 cm dia x 61 cm ht. (62" dia. x 24" ht.)                                                |
| FUEL CAPACITY*               | 310 kg *optimal BOL pressure uses 301 kg                                                     |
| PAYLOAD MASS                 | > 1,920 kg (> 320 kg per port). Please<br>see Page 3 for more information on<br>payload mass |
| TOTAL POWER (BOL)            | 1,200 W via four-panel solar array                                                           |
| PAYLOAD PEAK POWER           | Tailorable based on mission profile                                                          |
| BATTERY                      | 96 A-hr Li-ion                                                                               |
| DOWNLINK RATE                | 256 kbps/1.6 Mbps via SGLS; other<br>downlink frequencies available upon<br>request          |
| UPLINK RATE                  | 2.0 kbps via AFSC; other uplink frequen-<br>cies available upon request                      |
| PAYLOAD DATA<br>STORAGE      | 36 Gbytes non-TMR, non-volatile                                                              |

or separable (fly-away) payloads. The payload interface at each port has been standardized, allowing for hosted and separable payload interchangeability, late payload integration, and manifest changes. The ESPAStar platform leverages the available mass margin from any EELV launch to provide an affordable path to space for payloads. The platform is optimized for GEO missions, but is adaptable for LEO and MEO missions and can be modified to support missions beyond GEO.

| LAUNCH VEHICLE (               | LV) COMPATIBILITY                                                                                                                                                                                |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REFERENCE LV<br>CONFIGURATION  | EELV Secondary Payload Adapter (ESPA)                                                                                                                                                            |
| PAYLOAD ATTACH<br>FITTING      | 15" diameter port (qty. six ports)                                                                                                                                                               |
| OTHER LV<br>COMPATIBILITIES    | All EELV ESPA Compatible Launch Vehicles                                                                                                                                                         |
| REFERENCE ORBIT                | COMPATIBILITY                                                                                                                                                                                    |
| APOGEE<br>ALTITUDE             | 35,786 km ± 300 km                                                                                                                                                                               |
| PERIGEE<br>ALTITUDE            | 35,786 km $\pm$ 300 km                                                                                                                                                                           |
| INCLINATION                    | $0 \text{ deg} \pm 2 \text{ deg}$                                                                                                                                                                |
| OTHER ORBIT<br>COMPATIBILITIES | All Low Earth Orbits; Low Inclination to<br>Sun-Synchronous. Earth-Trailing Orbits,<br>Geosynchronous Equatorial Orbits (GEO),<br>Cis-Lunar Orbits, Earth-Sun and Earth Moon<br>Libration Points |



# **ESPASTAR™**





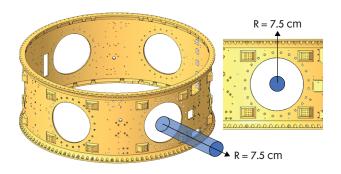


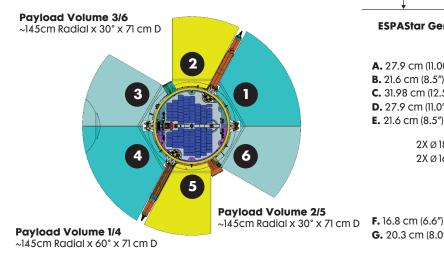








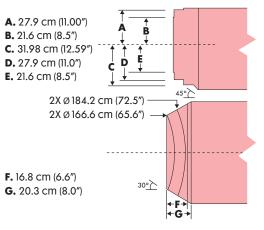

| SPECIFICATIONS                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESIGN MISSION LIFETIME<br>AND RELIABILITY RATING | 1.5 years (3 years goal) Ps=0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| STRUCTURE TYPE DESCRIPTION                        | Aluminum Forged Ring; Aluminum Honeycomb forward and aft decks and internal bulkhead                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ELECTRICAL POWER<br>SUBSYSTEM                     | Direct Energy Transfer System<br>Peak Payload Power (EOL): 850 W<br>Orbit Average Payload Power (EOL): 800 W<br>Allowable Payload Standby Power : 120 W safe mode<br>Bus Voltage, Nominal Range (V): 24 V to 33.6 V<br>Battery-Capacity: 24 Ahr (96 Ahr total, 4x quantity)                                                                                                                                                                                                                                                                     |
| ATTITUDE CONTROL<br>ARCHITECTURE TYPE             | 3-axis stabilized, zero momentum<br><b>Pointing Accuracy</b><br>Roll 149.4 arcsec Pitch 142.4 arcsec Yaw 144 arcsec<br>(3-sigma) @Star Tracker Interface, Normal RWA operations<br>Pointing Stability: 4.6 arcsec/sec<br><b>Maximum Maneuver Rates</b><br>Mission Specific, nominal range from 0.25-0.75 deg/sec                                                                                                                                                                                                                                |
| COMMUNICATION<br>SYSTEMS                          | Receive Frequency Band: L-Band<br>Receiver Bandwidth: ± 100 kHz for doppler<br>Transmit Frequency Band: S-Band<br><b>Telemetry Transmit Rate</b><br>Low rate: 8 kbps SCO via omni-directional antenna system<br>Medium rate: 256 kbps direct-carrier BPSK via omni-directional antenna system<br>High rate: 1.6 Mbps direct-carrier BPSK via high-gain antenna<br><b>Command Receive Rate</b><br>2 kbps FSK/AM ternary SGLS uplink via omni-directional antenna system<br>1 Mbps PRN ranging available for turnaround<br>Transmitter Power: 5 W |
| COMMAND & DATA<br>HANDLING                        | Single Integrated Avionics Unit (IAU) hosting all spacecraft C&DH and power control functions,<br>including spacecraft component interfaces and instrument payload state of health<br><b>Data Handling Capacity</b><br>115 kbps UART for Payload Command, Telemetry, Data<br>Data Storage Capacity: 24,000Mb                                                                                                                                                                                                                                    |
| THERMAL CONTROL                                   | Cold-biased passive thermal control design with surface treatments and MLI blanketing as required. Active thermal control provided by software-controlled heater circuits and thermostatically controlled heater circuits.                                                                                                                                                                                                                                                                                                                      |
| PROPULSION SYSTEM                                 | Monopropellant blowdown system with twelve (12x) 0.2 lbf thrusters and four (4x) 5 lbf thrusters<br>Total Impulse Capability 360 m/s (1489 kg dry mass)                                                                                                                                                                                                                                                                                                                                                                                         |




# **ESPASTAR™**

### **MOUNTING LOCATIONS AND VOLUMES (INTERIOR AND EXTERIOR)**

Payload Port dependent. Ports 1 & 6 or 3 & 4 can be combined into a single volume






# (View 1) 29.21 cm (11.50") 35.56 cm (14.00") (25.50") (25.50") (25.50") (25.50") (25.50") (25.50") (25.50") (31.48 cm) (32.08") (32.08") (32.08")

**ESPAStar Generic Compliant Payload Volume 1** 

ESPAStar Generic Compliant Payload Volume 1 (View 2)



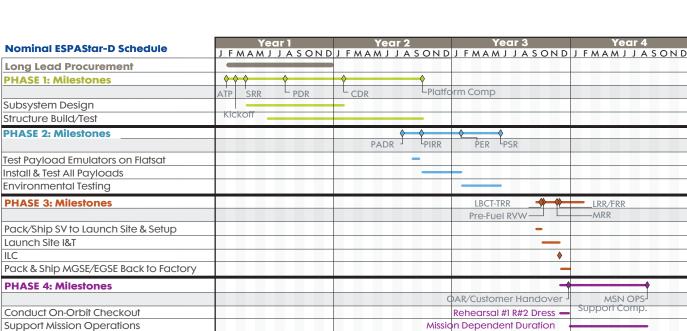
| INTERFACE (1)               | ESPAStar-D<br>QTY | NOTE                                    |
|-----------------------------|-------------------|-----------------------------------------|
| Differential RS-422         |                   |                                         |
| Asynchronous                | 2                 | UART, 8-bits, no parity, on stop<br>bit |
| Synchronous                 | 1                 |                                         |
| SpaceWire                   | 1                 |                                         |
| Discrete Bi-Level           |                   |                                         |
| Bi-Level Input (TLM)        | 5                 | Input to bus; Payload TLM               |
| Bi-Level Output (CMD)       | 5                 | Output from bus; Payload CMD            |
| MIL-STD-1553(2)             | 1                 | Non-standard, dual redundant            |
| High Speed Data 3:21 SERDES | 1                 | Non-standard, 3:21 deserializer         |
| Analog Telemetry            | 7                 | Analog voltage telemetry $\pm 10V$      |
| Temperature Sense           | 10(3)             | AD590, PRT, 10K Thermistor              |
|                             |                   |                                         |

(1) All input/output directionality is with respect to the Platform / (2) The
MIL-STD-1553 connection must be planned for by no later than Program CDR
/ (3) The ESPAStar-D Platform can support 10 AD590s per port, and up to 4
PRTs shared by entire manifest, but it does not accommodate 10k Thermistors

### PAYLOAD MASS AND CENTER-OF-MASS ALLOWABLE DESIGN ENVELOPE

| CENTER-<br>OF-MASS<br>LOCATION<br>(CM (IN) | MASS FOR<br>FOUR-POINT<br>MOUNT<br>(KG (LB) | MASS FOR -HP<br>EIGHT-POINT<br>MOUNT<br>(KG (LB) |
|--------------------------------------------|---------------------------------------------|--------------------------------------------------|
| O (O)                                      | 370 (815)                                   | 740 (1631)                                       |
| 51 (20)                                    | 370 (815)                                   | 740 (1631)                                       |
| 76 (30)                                    | 158 (348)                                   | 316 (696)                                        |
| 102 (40)                                   | 90 (198)                                    | 180 (396)                                        |
| >102 (>40)                                 | O (O)                                       | O (O)                                            |

### PAYLOAD ELECTRICAL POWER CAPABILITIES 24V-34V POWERED SWITCHES WITH FOLLOWING RATINGS:


- 1.2A Fire Only
- 5.0A Fire Only
- 5.0 Arm/Fire



## ngc.com

©2024 Northrop Grumman DS97d Approved for public release – #23-2381





### PAYLOAD THERMAL ACCOMMODATIONS

- Available P/L thermal capacity from Core SC (Orbit Avg.): 7.5W per payload port
- P/L Interface Temperature Range: -30 C to +50 C
- Available P/L Thermal Field of View: 1pi steradian from payload port

### **SCIENCE DATA STORAGE**

• 2 GB via Spacewire or SERDES only

### FACILITIES OVERVIEW AND USE PLAN

CONTRACT BASELINE DELIVERY SCHEDULE, ARO THROUGH LAUNCH AND ON-ORBIT CHECKOUT

### **OTHER SPECIAL FEATURES AND CAPABILITIES**

- ESPAStar-D updgrades:
  - Dynatubes (fuel sharing with payloads)
  - Aux Prop Tank (replacing a Payload for 200 kg propellant)
  - Software Defined Radio for TT&C
  - Increased battery capacity
  - Evolved Avionics System, providing additional I/O for payloads and more onboard processing

NORTHROP GRUMMAN

– Camera

### EPSASTAR-D HISTORIC MISSIONS

| VEHICLE       | STATUS                     |
|---------------|----------------------------|
| ESPAStar-D-1  | Launched 2022              |
| ESPAStar-D-2  | Launched 2022              |
| ESPAStar-D-3  | Launched 2021              |
| ESPAStar-D-4  | Launched 2022              |
| ESPAStar-D-5  | In Production or Delivered |
| ESPAStar-D-6  | In Production or Delivered |
| ESPAStar-D-7  | In Production or Delivered |
| ESPAStar-D-8  | In Production or Delivered |
| ESPAStar-D-9  | In Production or Delivered |
| ESPAStar-D-10 | Launched 2023              |
| ESPAStar-D-11 | In Production or Delivered |
| ESPAStar-D-12 | In Production or Delivered |
| ESPAStar-D-13 | In Production or Delivered |
| ESPAStar-D-14 | In Production or Delivered |

### ngc.com

©2024 Northrop Grumman DS97d Approved for public release – #23-2381

### **GILBERT FACTORY AND TEST FACILITIES**



AI&T Low-Bay

EMI/EMC Test

Chamber





Thermal Vacuum Test Chamber Acoustics Chamber

Rapid Spacecraft Development Office (RSDO) NASA Goddard Space Flight Center Mail Code 401.1 Greenbelt, MD 20771 USA Phone: 301-286-0429 Email to: rsdo@rsdo.gsfc.nasa.gov